Public Support for Nuclear Proliferation: Experimental Evidence from Brazil

Matias Spektor, Guilherme N. Fasolin, and Juliana Camargo^{*}

Contents

1	Survey Sample Characteristics 1.1 Sample Recruitment 1.2 Sample Characteristics 1.3 Respondents by Treatment Condition	2 2 2 3
2	Balance across Treatments	3
3	Treatment Effects 3.1 Main Models 3.2 Main Models with controls 3.3 Complementary Analyses 3.4 Heterogeneous Treatments Effects - Conservation Values	8 8 9 10 10
4	Correction for Multiple Comparisons (Benjamini-Hochberg Method)4.1Main models4.2Main models with controls	12 12 13
5	Full factor regressions	14
6	Summary of Expectations and Findings	15
7	Experimental Survey Design	15
8	Survey Instrument 8.1 Vignettes - English 8.2 Dependent Variable 8.3 Attitudinal Measure: Conservation Values 8.4 Demographic variables	16 16 16 17 17
9	References	18

^{*}Matias Spektor is Associate Professor at the School of International Relations at FGV. Guilherme Fasolin is PhD Student at Department of Political Science at Vanderbilt University, and Research Associate at the School of International Relations at FGV. Juliana Camargo is Adjunct Professor at the School of International Relations at FGV.

1 Survey Sample Characteristics

1.1 Sample Recruitment

The study was fielded by the Datafolha Institute as part of a larger, unrelated omnibus survey conducted in December 2019. In this experiment, the respondents came from a sample of 2001 Brazilians over 18 years of age. Datafolha Institute distributed enumerators in approximately 120 municipalities, which were randomly selected by a stratum of the region, nature of the municipality (state capital, other metropolitan or interior regions), federal state, and municipality population size. These municipalities were selected to match the demographic composition laid out by the Brazilian Institute of Geography and Statistics (IBGE) in 2018 alongside age, income, education, gender, and region. Enumerators collected the data face-to-face.

1.2 Sample Characteristics

Table 1 shows the demographic characteristics of our sample both with and without weights. The weights were provided by the Datafolha Institute, which used the 2019 Estimate of Brazil Census 2010 to adjust the region and nature of the municipalities, and the National Household Sample Survey (PNAD/2018) to correct sex, age, income, and education variables.

The demographic characteristics are based on the following variables:

- 1. 'nquest: 9-digit DataFolha Respondent Code.
- 2. 'trstatus': Treatment Status.
- 1. **'Age'**: Age.
- 2. 'Female': Dummy for Female Respondent.
- 3. 'Income': 8-brackets income levels.
- 4. 'Region': Brazilian region.
- 5. 'High school or more': Dummy for High School or more of education.
- 6. **'Religion'**: 4-brackets religion levels¹
- 7. 'Conservation': Conservation scale is composed by tradition, conformity, and security values.²

 $^{^{1}}$ The Evangelical Pentecostal variable aggregates the following Evangelical religions: Evangelical Pentecostal, Evangelical Neo-Pentecostal and others Evangelical. In turn, the Evangelical Traditional category is formed by Evangelical Traditional or Evangelical Protestant.

²The dummy is based in six questions: 1. It is important to live in a safe environment and avoid anything that could jeopardize your safety; 2. People must take orders and always follow the rules, even when no one is looking; 3. It is important to be obedient to one's parents and older people; 4. Having a stable society is important. The protection of order in society is a concern; 5. Tradition is important. It is necessary to try to follow the customs transmitted by religion or family; 6. It is important to be humble, modest and not try to draw attention to yourself. We construed six dummies, one for each question. The dummies is equal to one if the answer to the question is higher than 2, and zero otherwise. So conservation variable is equal to one less all dummies divided by 6 $(Conservation = 1 - \sum_{i=1}^{6} \frac{dummies_i}{6})$

	Without weights	With weights
Age	42.80	42.87
Female:		
Yes	52.52%	52.7%
No	47.48%	47.3%
Income:		
BRL 0.00 to BRL 998.00 $$	25.10%	25.7%
BRL 999.00 to BRL 1,996.00 $$	22.61%	23.2%
BRL 1,997.00 to BRL 2,994.00 $$	20.95%	21.0%
BRL 2,995.00 to BRL 4,990.00 $$	17.48%	17.3%
BRL $4,991.00$ or more	13.85%	12.9%
High school or more:		
No	43.88%	44.6%
Yes	56.12%	55.4%
Region:		
Center-West	8.10%	7.8%
North	7.70%	7.6%
Northeast	25.54%	25.6%
South	14.79%	14.8%
Southeast	43.88%	44.4%
Religion:		
Catholic	51.62%	51.3%
Evangelical Pentecostal	18.79%	18.8%
Evangelical Traditional	12.74%	13.1%
Others/No Relig.	16.84%	16.8%
Conservation	0.93	0.926

Table 1: Descriptive Statistics

1.3 Respondents by Treatment Condition

Table 2: Number of Respondents by Treatment Condition

	Ν
No Threat	288
Threat from Low-Power State	284
Threat from High-Power State	285
U.S. Conventional Security Guarantee	287
No U.S. Conventional Security Guarantee	283
High Credibility (Conventional)	284
Low Credibility (Conventional)	290

2 Balance across Treatments

We perform t-tests in order to check the balancing of our sample across treatment conditions. The tables below show that randomization was successful, in that the respondents in the experiment are well-balanced across all treatment arms (and in their dyads of comparison) for a range of demographic characteristics, namely: age, gender, education, region, income, and religion.

Table 3: Balance Tests

	Variable	Value	P-Value
	Age	0.252	0.801
	Sex	0.284	0.776
	High school or more	-0.065	0.948
	Center-West	0.144	0.886
	North	0.063	0.950
Region	Northeast	-0.169	0.866
-	South	0.270	0.787
	Southeast	-0.349	0.727
	BRL 0.00 to BRL 998.00	-1.252	0.211
Incomo	BRL 1,997.00 to BRL 2,994.00	0.689	0.491
Income	BRL 2,995.00 to BRL 4,990.00	-0.682	0.496
	BRL 4,991.00 or more	1.461	0.145
	Catholic	-1.469	0.142
Dolimian	Evangelical Pentecostal	1.313	0.190
Religion	Evangelical Traditional	1.094	0.274
	Others/No Relig.	-0.394	0.693
		Ν	
Threat from High-Power State		285	
No Thre	at	288	

Treatment variable: Threat from High-Power State vs No Threat

Table 4: Balance Tests

	Variable	Value	P-Value
	Age	-0.555	0.579
	Sex	0.492	0.623
	High school	1.074	0.283
	Center-West	-0.316	0.752
	North	0.403	0.687
Region	Northeast	0.094	0.925
-	South	0.102	0.919
	Southeast	-0.206	0.837
	BRL 0.00 to BRL 998.00	-1.108	0.268
Incomo	BRL 1,997.00 to BRL 2,994.00	0.557	0.577
mcome	BRL 2,995.00 to BRL 4,990.00 $$	0.654	0.513
	BRL 4,991.00 or more	0.713	0.476
	Catholic	-2.111	0.035
Dolimian	Evangelical Pentecostal	0.854	0.393
Religion	Evangelical Traditional	1.922	0.055
	Others/No Relig.	0.278	0.781
		Ν	
Threat from Low-Power State		284	
No Thre	at	288	

Treatment variable: Threat from Low-Power State vs No Threat

	Variable	Value	P-Value
	Age	0.803	0.422
	Sex	-0.208	0.836
	High school	-1.136	0.257
Region	Center-West North Northeast South Southeast	$\begin{array}{c} 0.459 \\ -0.338 \\ -0.262 \\ 0.167 \\ -0.143 \end{array}$	0.647 0.735 0.793 0.867 0.886
Income	BRL 0.00 to BRL 998.00 BRL 1,997.00 to BRL 2,994.00 BRL 2,995.00 to BRL 4,990.00 BRL 4,991.00 or more	$-0.135 \\ 0.127 \\ -1.325 \\ 0.735$	$0.893 \\ 0.899 \\ 0.186 \\ 0.463$
Religion	Catholic Evangelical Pentecostal Evangelical Traditional Others/No Relig.	$0.639 \\ 0.456 \\ -0.830 \\ -0.670$	$0.523 \\ 0.649 \\ 0.407 \\ 0.503$
		Ν	
Threat from High-Power State		285	
Threat f	rom Low-Power State	284	

Table 5: Balance Tests

Treatment variable: Threat from High-Power State vs Threat from Low-Power State

Table	6:	Balance	Tests

Treatment variable: U.S. Conventional Security Guarantee vs Threat from High-Power State

	Variable	Value	P-Value
	Age	-1.568	0.117
	Sex	0.500	0.617
	High school	-0.877	0.381
	Center-West	-0.496	0.620
	North	0.201	0.841
Region	Northeast	0.334	0.738
	South	-0.332	0.740
	Southeast	0.451	0.652
	BRL 0.00 to BRL 998.00	1.870	0.062
Income	BRL 1,997.00 to BRL 2,994.00	-0.469	0.639
Income	BRL 2,995.00 to BRL 4,990.00	0.278	0.781
	BRL 4,991.00 or more	-1.387	0.166
	Catholic	0.582	0.561
Dalimian	Evangelical Pentecostal	-0.038	0.970
Religion	Evangelical Traditional	-1.292	0.197
	Others/No Relig.	0.418	0.676
		Ν	
U.S. Cor	ventional Security Guarantee	283	
Threat f	rom High-Power State	285	

	Variable	Value	P-Value
	Age	0.886	0.376
	Sex	-0.293	0.770
	High school	2.267	0.024
	Center-West	0.206	0.837
	North	-0.101	0.919
Region	Northeast	-0.072	0.942
-	South	0.320	0.749
	Southeast	-0.463	0.643
	BRL 0.00 to BRL 998.00	-1.653	0.099
r	BRL 1,997.00 to BRL 2,994.00	-0.039	0.969
Income	BRL 2,995.00 to BRL 4,990.00	1.299	0.194
	BRL 4,991.00 or more	1.020	0.308
	Catholic	1.470	0.142
D - 1::	Evangelical Pentecostal	-0.091	0.927
Religion	Evangelical Traditional	-0.677	0.499
	Others/No Relig.	-1.197	0.232
			Ν
High Cre	edibility (Conventional)		284
U.S. Cor	ventional Security Guarantee		283

Table 7: Balance Tests

Treatment variable: High Credibility (Conventional) vs U.S. Conventional Security Guarantee

Table 8: Balance Tests

Treatment variable: U.S. Conventional Security Guarantee vs Low Credibility (Conventional)

	Variable	Value	P-Value
	Age	-0.981	0.327
	Sex	1.612	0.108
	High school	-2.212	0.027
	Center-West	-0.344	0.731
	North	0.230	0.818
Region	Northeast	0.118	0.906
	South	-0.239	0.811
	Southeast	0.392	0.695
	BRL 0.00 to BRL 998.00	2.035	0.042
T	BRL 1,997.00 to BRL 2,994.00	-0.574	0.566
Income	BRL 2,995.00 to BRL 4,990.00	-0.690	0.490
	BRL 4,991.00 or more	-0.964	0.335
	Catholic	-0.469	0.639
Dolimion	Evangelical Pentecostal	1.131	0.259
Religion	Evangelical Traditional	-0.726	0.468
	Others/No Relig.	0.103	0.918
			Ν
U.S. Cor	ventional Security Guarantee		283
Low Cre	dibility (Conventional)		290

Table 9: Balance Tests

	Variable	Value	P-Value
	Age	-0.085	0.932
	Sex	1.318	0.188
	High school	0.067	0.947
	Center-West	-0.136	0.892
	North	0.129	0.898
Region	Northeast	0.045	0.964
	South	0.082	0.935
	Southeast	-0.074	0.941
	BRL 0.00 to BRL 998.00	0.375	0.707
т	BRL 1,997.00 to BRL 2,994.00	-0.615	0.539
Income	BRL 2,995.00 to BRL 4,990.00	0.616	0.538
	BRL 4,991.00 or more	0.059	0.953
	Catholic	1.008	0.314
י יו ת	Evangelical Pentecostal	1.040	0.299
Religion	Evangelical Traditional	-1.407	0.160
	Others/No Relig.	-1.101	0.272
			Ν
High Cre	edibility (Conventional)		284
Low Cre	dibility (Conventional)		290

Treatment variable: High Credibility (Conventional) vs Low Credibility (Conventional)

Table 10: Balance Tests: No U.S. Conventional Security Threat vs No Threat

V	Ct - + : - + : -	1	Ola
variables	Statistic	p-value	Obs
Age	-0.541	0.588	572
High School or more	1.693	0.091	572
Female	0.670	0.503	572
Southeast	-0.264	0.792	572
South	0.152	0.879	572
Northeast	0.240	0.810	572
Midwest	-0.282	0.778	572
North	0.179	0.858	572
Catholic	1.260	0.208	572
Evangelical Pentecostal	-0.290	0.772	572
Evangelical Tradicional	-0.493	0.622	572
Others/No Relig.	-0.932	0.352	572
BRL 0.00 to BRL 998.00	0.320	0.749	572
BRL 999.00 to BRL $1,996.00$	-0.199	0.843	572
BRL 1,997.00 to BRL 2,994.00	-1.529	0.127	572
BRL 2,995.00 to BRL 4,990.00	1.425	0.155	572
BRL $4,991.00$ or more	0.078	0.938	572

3 Treatment Effects

3.1 Main Models

In the models below, we test the main effects of our treatment conditions on public support for proliferation. The response variable is the Dummy for support for Nuclear Proliferation. The dummy assumes value one if the answer to the question "...Brazil should build a nuclear weapon to defend itself" is strongly agree or somewhat agree, and zero otherwise.

Table 11: Estimated Effect of Different External Security Environments on Support for Proliferation

Dependent Variable: Model:	Support i (1)	for Nuclear (2)	Proliferation (3)
Variables			
Threat from High-Power State	0.187^{***}		0.162^{**}
	(0.035)		(0.041)
Threat from Low-Power State		0.025	
		(0.028)	
(Intercept)	0.264^{***}	0.264^{***}	0.290^{***}
	(0.045)	(0.045)	(0.042)
Fit statistics			
\mathbb{R}^2	0.03818	0.00079	0.02818
Adjusted \mathbb{R}^2	0.03649	-0.00096	0.02647
Observations	573	572	569

Notes: In columns (1) and (2) the control group is "No Threat"; in column (3) the control group is "Threat from Low-Power State". Robust standard errors are clustered at the region level. Significance levels: ***: 0.01, **: 0,05, *: 0.1.

Table 12: Estimated Effect of U.S. Conventional Security Guarantee and its Level of Credibility on Support for Proliferation

Dependent Variable:	Support for Nuclear Proliferation				
Model:	(1)	(2)	(3)	(4)	
Variables					
U.S. Conventional Security Guarantee	-0.131^{**}				
	(0.034)				
High Credibility (Conventional)		0.000		-0.018	
Then creationary (Conventionar)		(0.018)		(0.023)	
Low Credibility (Conventional)			0.019		
			(0.016)		
(Intercept)	0.452^{***}	0.321^{***}	0.321^{***}	0.340^{***}	
	(0.015)	(0.033)	(0.033)	(0.025)	
Fit statistics					
\mathbb{R}^2	0.01800	1.98×10^{-7}	0.00040	0.00038	
Adjusted \mathbb{R}^2	0.01626	-0.00177	-0.00135	-0.00137	
Observations	568	567	573	574	
Minimum sample to detectable effect	363	$35,\!817,\!148$	38,058	18,402	

Notes: In column (1) the control group is "Threat from High-Power State"; in columns (2) and (3) the control group is "U.S. Conventional Security Guarantee"; in column (4) the control group is "Low Credibility (Conventional). The minimum sample to detectable effect presented is related to a significance level of 0.1. Robust standard errors are clustered at the region level. Significance levels: ***: 0.01, **: 0,05, *: 0.1.

3.2 Main Models with controls

Dependent Variable:	Support for Nuclear Proliferation			
Model:	(1)	(2)	(3)	
Variables				
Threat from High-Power State	0.180^{***}		0.148^{**}	
	(0.034)		(0.050)	
Threat from Low-Power State		0.035		
		(0.021)		
(Intercept)	0.543^{***}	0.508**	0.570^{***}	
	(0.039)	(0.119)	(0.083)	
Fit statistics				
Controls	Yes	Yes	Yes	
\mathbb{R}^2	0.11399	0.06700	0.08618	
Adjusted \mathbb{R}^2	0.07735	0.02797	0.04744	
Observations	555	549	542	

Table 13: Estimated Effect of Different External Security Environments on Support for Proliferation

Notes: In columns (1) and (2) the control group is "No Threat"; in column (3) the control group is "Threat from Low-Power State". Controls include individuals age and dummies for gender, income group, religion and schooling. Robust standard errors are clustered at the region level. Significance levels: ***: 0.01, **: 0.05, *: 0.1.

Table 14: Estimated Effect of U.S. Conventional Security Guarantee and its Level of Credibility on Support for Proliferation

Dependent Variable:	Support for Nuclear Proliferation					
Model:	(1)	(1) (2) (3)				
Variables						
U.S Conventional Security Guarantee	-0.107^{*}					
	(0.049)					
High Credibility (Conventional)		-0.003		-0.025		
High Credibility (Conventional)		(0.024)		(0.025)		
Low Credibility (Conventional)			0.013			
			(0.024)			
(Intercept)	0.767^{***}	0.683^{***}	0.773^{***}	0.828^{***}		
	(0.052)	(0.112)	(0.103)	(0.111)		
Fit statistics						
Controls	Yes	Yes	Yes	Yes		
\mathbb{R}^2	0.09385	0.08345	0.07564	0.08610		
Adjusted \mathbb{R}^2	0.05573	0.04497	0.03712	0.05003		
Observations	546	547	551	554		
Minimum sample to detectable effects	541	$697,\!270$	$38,\!058$	$9,\!541$		

Notes: In column (1) the control group is "Threat from High-Power State"; in columns (2) and (3) the control group is "U.S Conventional Security Guarantee"; in column (4) the control group is "Low Credibility (Conventional)". Controls include individuals age and dummies for gender, income group, religion and schooling. The minimum sample to detectable effect presented is related to a significance level of 0.1. Robust standard errors are clustered at the region level. Significance levels: ***: 0.01, **: 0,05, *: 0.1.

3.3 Complementary Analyses

To guarantee the robustness of the effects of different external security environment treatments on support for nuclear proliferation, this section runs additional analyses changing the dyads of comparison. We do this because some might question that using "Threat from High-Power State" in the treatment condition without an explicit cue about the absence of a U.S. conventional security guarantee could have biased our results since respondents in this group may inadvertently assume that the U.S. provides security protection to Brazil. To test if this difference in language affected our results, we run additional analyses where the scenario of acute security threat ("Threat from High-Power State") is presented to respondents alongside the explicit information about the absence of U.S. conventional security guarantee. The overall result of table 15 reveals that the acute security threat effect is not conditioned by changes in the wording of the scenario. There is no statistically significant difference in the average approval in the "Threat from High-Power State" and "No U.S. Conventional Security Guarantee" treatments, alleviating concerns that approval for proliferation is driven by this difference in language.

Table 15: External Security Environment Results: Robustness to Variation in Treatment Conditions

Dependent Variable:	Support for	Nuclear Proliferation
Model:	(1)	(2)
Variables		
No U.S. Conventional Security Guarantee	0.103^{**}	
	(0.030)	
Threat from High-Power State		0.088
		(0.047)
(Intercept)	0.674^{***}	0.784***
	(0.114)	(0.056)
Fit statistics		
Controls	Yes	Yes
\mathbb{R}^2	0.09126	0.10269
Adjusted \mathbb{R}^2	0.05579	0.06545
Observations	560	553

Notes: In column (1) the control group is "No Threat"; and in column (2) the control group is "No U.S. Conventional Security Guarantee". Controls include individuals age and dummies for gender, income group, religion and schooling. Robust standard errors are clustered at the region level. Significance levels: ***: 0.01, **: 0,05, *: 0.1.

3.4 Heterogeneous Treatments Effects - Conservation Values

It is well recognized that individuals often rely on cognitive shortcuts to make sense of complex phenomena in which they may struggle to understand the stakes at play or the rules of the game (Brutger and Kertzer 2018). In this context, one of the main types of cognitive shortcuts that individuals recur to interpret these situations is their own pre-existing core values. Among these values, conservation values have been shown to be an important conditioning factor on people's attitudes toward international security topics (Rathbun et al. 2016). Drawing on these insights, we could expect that people holding higher levels of conservation values - which include security, tradition, and conformity (Schwartz 1992) - would be able to process and form preferences toward nuclear proliferation differently from those at lower levels. More specifically, because the underlying motivation and cognitive schema of conservation values is consistent with deterrence, it is plausible to expect individuals at the higher end of a conservation-value scale to express more support for proliferation in scenarios of acute security threat. This would occur even when the U.S. offers credible conventional assurances given that individuals who believe the world to be a dangerous and threatening place are unlikely to trust the promises of a third country's protection against an existential threat. In our results shown in table 16 and 17, the level of conservation values does not significantly affect respondent support for pursuing the nuclear bomb, suggesting that these values are not used by the public as heuristic shorthand for assessing nuclear proliferation dynamics.

Dependent Variable:	Support for Nuclear Proliferation			
Model:	(1)	(2)	(3)	
Variables				
Threat from High-Power State	0.181^{***}		0.149^{**}	
-	(0.033)		(0.044)	
Threat from Low-Power State	, ,	0.035		
		(0.021)		
Conservation Values	0.035	-0.106	0.277^{**}	
	(0.128)	(0.096)	(0.094)	
(Intercept)	0.512^{***}	0.605^{**}	0.324^{**}	
	(0.090)	(0.150)	(0.113)	
Fit statistics				
Controls	Yes	Yes	Yes	
\mathbb{R}^2	0.11408	0.06779	0.09255	
Adjusted \mathbb{R}^2	0.07570	0.02695	0.05226	
Observations	555	549	542	

Table 16: Conservation Values: Interaction with External Security Environment Treatments

Notes: In columns (1) and (2) the control group is "No Threat"; in column (3) the control group is "Threat from Low-Power State". Conservation values was constructed using factor analysis. Controls include individuals age and dummies for gender, income group, religion and schooling. Robust standard errors are clustered at the region level. Significance levels: ***: 0.01, **: 0,05, *: 0.1.

Table 17: Conservation Values: Interaction with U.S. Conventional Security Guarantee and Credibility Treatments

Dependent Variable:	Support for Nuclear Proliferation					
Model:	(1)	(2)	(3)	(4)		
Variables						
U.S. Conventional Security Guarantee	-0.108^{*}					
	(0.049)					
High Credibility (Conventional)		-0.004		-0.024		
Tigh Credibility (Conventional)		(0.023)		(0.024)		
Low Credibility (Conventional)			0.012			
			(0.024)			
Conservation Values	0.051	-0.035	-0.099	0.075		
	(0.070)	(0.132)	(0.117)	(0.105)		
(Intercept)	0.723^{***}	0.714^{**}	0.863^{**}	0.760^{***}		
	(0.057)	(0.207)	(0.197)	(0.080)		
Fit statistics						
Controls	Yes	Yes	Yes	Yes		
\mathbb{R}^2	0.09406	0.08354	0.07648	0.08660		
Adjusted \mathbb{R}^2	0.05415	0.04324	0.03617	0.04876		
Observations	546	547	551	554		

Notes: In column (1) the control group is "Threat from High-Power State"; in columns (2) and (3) the control group is "U.S. Conventional Security Guarantee"; in column (4) the control group is "Low Credibility (Conventional)". Conservation values was calculated using factor analysis. Controls include individuals age and dummies for gender, income group, religion and schooling. Robust standard errors are clustered at the region level. Significance levels: ***: 0.01, **: 0.05, *: 0.1.

4 Correction for Multiple Comparisons (Benjamini-Hochberg Method)

We used a False Discovery Rate correction (Benjamini-Hochberg method) for multiple comparisons given the different hypotheses tested in this study. The results of our analyses remain robust after using this correction.

4.1 Main models

Table 18: Estimated Effect of Different External Security Environments on Support for Proliferation

Dependent Variable: Model:	Support f	for Nuclear (2)	Proliferation (3)
	(1)	(2)	(0)
Variables			
Threat from High-Power State	0.187^{***}		0.162^{**}
-	[<0.01]		[0.016]
Threat from Low-Power State		0.025	
		[0.4217]	
(Intercept)	0.264^{***}	0.264^{***}	0.290^{***}
	[<0.01]	[<0.01]	[<0.01]
Fit statistics			
\mathbb{R}^2	0.03818	0.00079	0.02818
Adjusted \mathbb{R}^2	0.03649	-0.00096	0.02647
Observations	573	572	569

Notes: In columns (1) and (2) the control group is "No Threat"; in column (3) the control group is "Threat from Low-Power State". The adjusted p-values are reported in brackets. Robust standard errors are clustered at the region level. Significance levels: ***: 0.01, **: 0,05, *: 0.1.

Table 19: Estimated Effect of U.S. Conventional Security Guarantee and its Level of Credibility on Support for Proliferation

Dependent Variable:	Support for Nuclear Proliferation			
Model:	(1)	(2)	(3)	(4)
Variables				
U.S. Conventional Security Guarantee	-0.131^{***}			
	[<0.01]			
High Credibility (Conventional)		0.000		-0.018
The orearising (conventional)		[0.982]		[0.469]
Low Credibility (Conventional)			0.019	
			[0.469]	
(Intercept)	0.452^{***}	0.321^{***}	0.321^{***}	0.340^{***}
	[<0.01]	[<0.01]	[<0.01]	[<0.01]
Fit statistics				
\mathbb{R}^2	0.01800	$1.98 imes 10^{-7}$	0.00040	0.00038
Adjusted \mathbb{R}^2	0.01626	-0.00177	-0.00135	-0.00137
Observations	568	567	573	574

Notes: In column (1) the control group is "Threat from High-Power State"; in columns (2) and (3) the control group is "U.S. Conventional Security Guarantee"; in column (4) the control group is "Low Credibility (Conventional)". Robust standard errors are clustered at the region level. Significance levels: ***: 0.01, **: 0,05, *: 0.1.

4.2 Main models with controls

Dependent Variable:	Support for Nuclear Proliferation				
Model:	(1)	(2)	(3)		
Variables					
Threat from High-Power State	0.184^{***}		0.158^{**}		
-	[0.01091]		[0.03730]		
Threat from Low-Power State		0.025			
		[0.52488]			
(Intercept)	0.587^{***}	0.499***	0.610^{***}		
	(0.035)	(0.057)	(0.046)		
Controls	Yes	Yes	Yes		
Fit statistics					
\mathbb{R}^2	0.09032	0.02468	0.06577		
Adjusted \mathbb{R}^2	0.08392	0.01780	0.05915		
Observations	573	572	569		

Table 20: Estimated Effect of Different External Security Environments on Support for Proliferation

Notes: In columns (1) and (2) the control group is "No Threat"; in column (3) the control group is "Threat from Low-Power State". Controls include individuals age and dummies for gender and schooling. The adjusted p-values are reported in brackets. Robust standard errors are clustered at the region level. Significance levels: ***: 0.01, **: 0,05, *: 0.1.

Table 21: Estimated Effect of U.S. Conventional Security Guarantee and its Level of Credibility on Support for Proliferation

Dependent Variable:	Support for Nuclear Proliferation				
Model:	(1)	(2)	(3)	(4)	
Variables					
U.S. Conventional Security Guarantee	-0.115**				
	[0.05027]				
High Credibility (Conventional)		-0.014		-0.023	
		[0.53955]		[0.37235]	
Low Credibility (Conventional)			0.004		
			[0.74162]		
(Intercept)	0.823^{***}	0.663^{***}	0.661***	0.665^{***}	
	(0.027)	(0.075)	(0.092)	(0.114)	
Controls	Yes	Yes	Yes	Yes	
Fit statistics					
\mathbb{R}^2	0.07160	0.05047	0.04581	0.04816	
Adjusted \mathbb{R}^2	0.06501	0.04371	0.03909	0.04147	
Observations	568	567	573	574	

Notes: In column (1) the control group is "Threat from High-Power State"; in columns (2) and (3) the control group is "U.S Conventional Security Guarantee"; in column (4) the control group is "Low Credibility (Conventional)". Controls include individuals age and dummies for gender and schooling. The adjusted p-values are reported in brackets. Robust standard errors are clustered at the region level. Significance levels: ***: 0.01, **: 0,05, *: 0.1.

5 Full factor regressions

Dependent Variable:	Support for Nuclear Proliferation				
Model:	(1)	(2)	(3)	(4)	
Variables					
Threat from High-Power State	0.187^{***}	0.182^{**}	0.162^{**}	0.148^{**}	
	(0.035)	(0.043)	(0.041)	(0.046)	
No U.S. Conventional Security Protection	0.108^{**}	0.099^{**}	0.082^{*}	0.065	
	(0.030)	(0.032)	(0.031)	(0.033)	
U.S. Conventional Security Protection	0.057	0.070	0.031	0.036	
	(0.032)	(0.034)	(0.031)	(0.031)	
High Credibility (Conventional)	0.057^{**}	0.067^{**}	0.032	0.033	
	(0.017)	(0.020)	(0.025)	(0.023)	
Low Credibility (Conventional)	0.075	0.084^{*}	0.050	0.051	
	(0.035)	(0.033)	(0.041)	(0.037)	
(Intercept)	0.264^{***}	0.640^{***}	0.290^{***}	0.674^{***}	
	(0.045)	(0.077)	(0.042)	(0.081)	
Fit statistics					
Controls	No	Yes	No	Yes	
\mathbb{R}^2	0.01430	0.06286	0.01430	0.06286	
Adjusted \mathbb{R}^2	0.01133	0.04954	0.01133	0.04954	
Observations	$2,\!001$	1,928	$2,\!001$	1,928	

Table 22: Full factor regression

Notes: In columns (1) and (2) the control group is "No Threat"; in column (3) and (4) the control group is "Threat from Low-Power State". Controls include individuals age and dummies for gender, income group, religion and schooling. Robust standard errors are clustered at the region level. Significance levels: ***: 0.01, **: 0.05, *: 0.1.

6 Summary of Expectations and Findings

Support for Proliferation?	Direction	Significance	Supported?
H1a : Increases in the presence of a threat from a high- power state compared to the absence of such a threat	Positive	Significant (***)	Yes
H1b : Increases in the presence of a threat from a high- power state compared to a threat from a low-power	Positive	Significant $(**)$	Yes
H2 : Decreases in the presence of conventional security guarantees	Negative	Significant (**)	Yes
H3 : Decreases in the presence of high credibility conventional security guarantees	Null Result	Null Result	No
H4 : Increases in the presence of low credibility conventional security guarantees	Positive	Not significant	No

Table 23: Summary of Main Effect Expectations and Findings

Note: This table presents a summary of the experimental findings and their relation with the hypotheses outlined in the study. We illustrate the hypotheses in a short version to enhance the readability of the table. Significance: ***: 0.01, **: 0.05, *: 0.1.

7 Experimental Survey Design

Figure 1: Experimental Survey Design

8 Survey Instrument

Below we present the instrumentation for the study fielded in Brazil, with the text translated into English and its original version in Portuguese. In the process of translation from Portuguese to English, we focus on the accuracy of meaning rather than of a literal translation based on word-to-word, which avoids the meaning distortions that might occur when the translated words combine into sentence form. While some might question our strategy of using short vignettes by arguing that it decreases the realism and participant engagement with the study, Brutger et al. (Forthcoming) point out that the extension of the vignette does not affect the direction of the main treatments effects. More important than the extension of vignettes text itself is whether the type of information provided to respondents makes them engage in the causal process proposed by the mechanisms under analysis. We firmly believe that our study goes in this direction.

8.1 Vignettes - English

Introduction

"Everyone talks about Brazil's external security in relation to other countries in the world. We will create different hypothetical scenarios and ask what you think of each one."

External Security Environment

No Threat: Consider that Brazil does not have an enemy country strong enough to threaten its security.

Threat from Low-Power State: Consider that a weak enemy country poses a major military threat to Brazil's security.

Threat from High-Power State: Consider that a powerful enemy country poses a major military threat to Brazil's security.

U.S. Conventional Security Guarantee

U.S. Conventional Security Guarantee: Consider that a powerful enemy country poses a major military threat to Brazil's security. The United States says it will protect Brazil.

No Conventional Security Guarantee: Consider that a powerful enemy country poses a major military threat to Brazil's security. The United States says it will not protect Brazil.

Credibility of U.S. Conventional Security Guarantee

High Credibility (Conventional): Consider that a powerful enemy country poses a major military threat to Brazil's security. The United States says it will protect Brazil, and the Brazilian government says that it trusts this promise.

Low Credibility (Conventional): Consider that a powerful enemy country poses a major military threat to Brazil's security. The United States says it will protect Brazil, yet the Brazilian government says that it does not trust this promise.

8.2 Dependent Variable

Given this situation, do you agree that Brazil should build a nuclear weapon to defend itself?

- I totally agree
- I partly agree
- I neither agree neither disagree
- I partly disagree

- I totally disagree
- I do not know

8.3 Attitudinal Measure: Conservation Values

For questions on conservation values, we ask respondents to select the response among *totally* agree, partly agree, neither agree nor disagree, partly disagree, and totally disagree that describe how much they agree with each of the statements below:

Security

- Living in a safe environment is a priority, and one should avoid any action that might put personal safety at risk.
- Having a stable society is important. Social order is a concern.

Conformity

- People should do what they are told and always follow the rules, even when no one is watching.
- It is important to be obedient to your parents and to elders.

Tradition

- It is important to be humble and modest, and not draw attention to oneself.
- Tradition is important. You try to follow the customs handed down by your religion or your family.

8.4 Demographic variables

- **[Q.1]** What is your sex?
- Male
- Female
 - [Q.2] What is your age? (Numerical Entry)

[Q.3] What is your level of education?

- Illiterate/Incomplete elementary school
- Complemete elementary school/incomplete middle school
- Complete middle school
- Incomplete high school
- Complete high school
- Incomplete undergraduate school
- Complete undergraduate school
- Graduate school

[Q.4] Roughly, how much did you earn last month?

- up to R\$ 1.045,00
- from R\$ 1.046,00 to R\$ 2.090,00
- from R\$ 2.091,00 to R\$ 3.135,00

- from R\$ 3.136,00 to R\$ 5.225,00
- from R\$ 5.226,00 to R\$ 10.450,00
- from R\$ 10.451,00 to R\$ 20.900,00
- from R\$ 20.901,00 to R\$ 52.250,00
- Not sure
- I would rather not answer

[Q.5] What is your race or ethnic group?

- White
- Black
- Brown
- Asian
- Native American
- Other (open textbox)

[Q.6] I would appreciate it if you told me your religion:

- Evangelical Christian
- Evangelical Protestant Christian
- Evangelical Pentecostal Christian
- Evangelical Neo-Pentecostal Christian
- Other Evangelical Christian denominations
- Umbanda, Candomblé or Afro-Brazilian religions
- Kardecist Spiritism, spiritualist
- Catholic
- Jewish
- Other religion? (Seisho-No-Iê, Perfeita Liberdade, Budhist, Santo Daime, Muslim)
- No religion/Agnostic
- Atheist/does not believe in God

9 References

Brutger, Ryan, Joshua D. Kertzer, Jonathan Renshon, Dustin Tingley, and Changai M. Weiss. Forthcoming. "Abstraction and Detail in Experimental Design." *American Journal of Political Science*.

Brutger, Ryan, Joshua D. Kertzer. 2018. "A Dispositional Theory of Reputational Costs." *International Organization* 72(3): 693-724.

Rathbun, Brian C., Joshua D.Kertzer, Jason Reifer, Paul Goren, and Thomas J. Scotto. 2016. "Taking Foreign Policy Personally: Personal Values and Foreign Policy Attitudes." *International Studies Quarterly* 60(1): 124-137.

Schwartz, Shalom H. 1992. "Universals in the Content and Structure of Values: Theoretical Advances and Empirical Tests in 20 Countries." Advances in Experimental Social Psychology 25:1-65.